The Surgical Management of Parkinson’s Disease

Andrew K. Metzger, MD
Neurosurgeon
Southwest Neurosurgical Associates
www.swnsa.com

I will discuss:
• The history of surgery for movement disorders
• Details of the current surgical procedure (deep brain stimulation),
 – Step-by-step description
 – Risks

Dr. Marjama will discuss:
• Who are good candidates for the surgery?
• What are the results of the surgery?
• …and more, I’d expect!

I will discuss:
• The history of surgery for movement disorders
• Details of the current surgical procedure (deep brain stimulation),
 – Step-by-step description
 – Risks

Historical Aspects

Target: → Pyramidal → Basal ganglia
Technique: → Open → Stereotactic → Lesioning → Stimulation
 → Ventriculogram/atlas → CT/MRI computer planning
 → Microelectrode rec
Historical Aspects

Target: Pyramidal Basal ganglia
Technique: Open Stereotactic Lesioning Stimulation

Ventriculogram/atlas CT/MRI computer planning Microelectrode rec

• Pyramidal era – 1940’s
• Tremor relief at the expense of strength
Historical Aspects

• Basal ganglia and thalamic era – 1950’s
• Cooper’s “surgical accident” - 1952

• Basal ganglia and thalamic era – 1950’s
• Meyer’s “pallidoansotomy” - 1952

• Basal ganglia and thalamic era – 1950’s
• Relief of tremor, rigidity, bradykinesia without weakness
Historical Aspects

- Development of stereotactic techniques to make surgery less invasive
 - Horsley and Clarke – animal device (1908)
 - Spiegel and Wycis – human frame (1946)

- Stereotactic atlases

- Pneumoencephalography

- Development of stereotactic techniques
 - Lars Leksell
 - Target centered frame
 - Ventral posterior pallidotomy
Historical Aspects

- Development of stereotactic techniques
 - Lars Leksell
 - Target centered frame
 - Ventral posterior pallidotomy

- Surgical procedures virtually abandoned in 1968 when L-Dopa became available

- Re-discovery of Leksell’s ventral posterior pallidotomy
- Significant improvement in bradykinesia, rigidity, dyskinesia

- Re-birth of interest in 1990’s (Laitenen)
Deep Brain Stimulation

- **History**
 - Initially used for pain control in 1960s
 - Clinical trials for movement disorders in the 1990s
 - FDA approved for ET in 1997, PD in 2002

I will discuss:

- The history of surgery for movement disorders
- Details of the current surgical procedure (deep brain stimulation),
 - Step-by-step description
 - Risks

Surgical Procedure Overview:

1. Frame placement
2. Imaging
3. Treatment planning
4. Operating room

Deep Brain Stimulation

- **History**
 - Initially used for pain control in 1960s
 - Clinical trials for movement disorders in the 1990s
 - FDA approved for ET in 1997, PD in 2002
- **Advantages over lesioning**
 - Adjustable
 - Reversible
 - Bilateral placement

I will discuss:

- The history of surgery for movement disorders
- Details of the current surgical procedure (deep brain stimulation),
 - Step-by-step description
 - Risks

Surgical Procedure:

- Stereotactic frame placement (sedation with IV Versed, local anesthesia)
Surgical Procedure:

- Stereotactic frame placement (sedation with IV Versed, local anesthesia)

Surgical Procedure

- Imaging
 - MRI as outpatient without frame
 - CT morning of surgery with frame

Surgical Procedure

- Treatment planning:
 - MRI and CT image sets loaded onto graphic computer workstation in OR

Surgical Procedure

- Treatment planning:
 - Images registered to fiducial markers allowing precise translation of brain anatomy into frame coordinates

Surgical Procedure

- Treatment planning:
 - Targets (right and left STN) chosen based on “indirect” and “direct” techniques

Surgical Procedure

- Treatment planning:
 - Frontal entry points chosen and optimized to avoid cortical vessels, sulci, ventricles
Surgical Procedure

• Operating room:
 – Positioning, preparation
 – Arterial line, foley catheter

• Operating room:
 – Frame coordinates set to entry and target

• Operating room:
 – DBS lead securing device placed in burr hole

• Operating room:
 – Entry burr hole (nickel size) created

• Operating room:
 – Microelectrode recording
Surgical Procedure

• Operating room:
 – Microelectrode recording

Surgical Procedure

• Operating room:
 – Microelectrode recording

STN

Border/S

10sec

10sec

10sec

80ms

80ms

80ms

Sagittal Section Through the Thalamus

Surgical Procedure

• Operating room:
 – DBS implant, test stimulation

Surgical Procedure

• Operating room:
 – DBS implant, test stimulation

Before DBS

R DBS test stim

Surgical Procedure

• Operating room:
 – IPG implant 3 weeks later under general anesthesia

Surgical Procedure

• Operating room:
 – IPG implant 3 weeks later under general anesthesia
 – Rehab admission
Thank You!